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ABSTRACT

Prostate cancer is the most common cancer among men,

excluding skin cancer. It is diagnosed by histopathology in-

terpretation of Hematoxylin and Eosin (H&E)-stained tissue

sections. Gland and nuclei distributions vary with the disease

grade, and the morphological features vary with the advance

of cancer. A tissue microarray with known disease stages can

be used to enable efficient pathology slide image analysis. We

focus on an intuitive approach for segmenting such images,

using the Hierarchical Self-Organizing Map (HSOM). Our

approach introduces the use of unsupervised clustering using

both color and texture features, and the use of unsupervised

color merging outside of the HSOM framework. The HSOM

was applied to segment 109 tissues composed of four tissue

clusters: glands, epithelia, stroma, and nuclei. These seg-

mentations were compared with the results of an EM Gaus-

sian clustering algorithm. The proposed method confirms that

the self-learning ability and adaptability of the HSOM, cou-

pled with the information fusion mechanism of the hierarchi-

cal network, leads to superior segmentation results for tissue

images.

Index Terms— Molecular pathology, Hematoxylin and

Eosin staining (H&E), Hierarchical selforganizing maps

(HSOM), Color and texture segmentation, Feature extrac-

tion, Region merging, prostate cancer, Tissue microarray

(TMA), Gleason score, Tumor staging, k-means clustering.

1. INTRODUCTION

Prostate cancer is the most common cancer among men,

excluding skin cancer. The American Cancer Society esti-

mates over 220,000 new cases of prostate cancer and nearly

30,000 deaths in the United States per year. A prostate

cancer diagnosis is typically established by histopathology

using Hematoxylin and Eosin (H&E)-stained tissue sections

[1], and pathologists use human pattern recognition to grade

prostate cancer. Digital microscopy is becoming increasingly

popular in pathology, and morphology from H&E slides
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obtained with image processing has been correlated with

cancer [2, 3]. Tissue microarrays (TMA) are used for high-

throughput pathology research wherein multiple tissues are

simultaneously processed to remove staining variability and

to reduce labor. The tissue cores from different patients are

embedded in a paraffin block and sliced to give multiple reg-

istered arrays. TMAs are used in drug discovery to test the

protein expression in tissues with a range of known outcomes

[4]. A first step is segmentation of the image into constituent

tissue types, which enables detection of abnormal regions in

a pathology slide.

In contrast to the classical methods of image segmentation

like thresholding and region merging, unsupervised clustering

approaches have the advantages of parallel processing (with

appropriate hardware) and adaptability. Hierarchical Self-

Organizing Maps (HSOM) provide a framework for unsuper-

vised clustering, and we propose a method for segmentation

of glands, nuclei, epithelial tissue, and stroma from molecu-

lar pathology images using a 2-stage HSOM. In Section 2, we

describe our formulation of HSOMs as applied to microscopy

images. In Section 3, we demonstrate qualitative results of the

HSOM relative to EM Gaussian clustering. And in Section 4,

we state our conclusions and steps for future work.

2. METHODS

The flowchart in Figure 1 describes the various stages in the

segmentation process using HSOMs. The elements of the

flow chart are described in the following subsections.

2.1. Feature Extraction

Each pixel is represented as a 7-dimensional vector {R, G, B,

T1, T2, T3, T4} of features suitable for training and subse-

quent classification using the HSOM.

The first three components are R, G, B values for every

pixel in the image. There have been efforts to distinguish stain

colors using an unmixing algorithm such as [5]. While such

algorithms help in quantification and also to compute statisti-

cal metrics such as one required for image registration, they

may not aid segmentation. The nonlinear nature of the RGB
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Fig. 1. Flowchart of the proposed method.

color space introduces interdependence between the channels,

and any such relationship - reflected in a particular combina-

tion of R, G, B values - will aid the classifier. Hence we retain

this color space for feature extraction.

The next four components (T1-T4) are texture features

obtained by applying Laws’ filters [6]. Laws developed a

set of symmetric and anti-symmetric center-weighted, two-

dimensional masks derived from five simple one-dimensional

filters. A Principal Component Analysis (PCA) revealed four

masks which significantly capture the underlying texture. The

image is convolved with each of the four masks to obtain cor-

responding texture energy images. The choice is justified by

the fact that this local convolution approach is computation-

ally simple and is adequate for the application at hand.

2.2. Hierarchical Self-Organizing Map

The hierarchical self-organizing map (HSOM) is a variant of

the self-organizing map (SOM), proposed by Kohonen [7]. A

SOM usually consists of M neurons located on a regular 1- or

2-dimensional grid. Higher dimensional grids are generally

not used as they are difficult to visualize.

The training mechanism for the basic SOM is iterative.

Each neuron i has a d-dimensional prototype vector mi =
[mi1, ...,mid], where d = 7 in our case. At each training step,

a sample data vector x is randomly chosen from the training

set. Distances between x and all prototype vectors are com-

puted. The best-matching unit (BMU), denoted here by b, is

the map unit with prototype closest to x:

‖x − mb‖ = min
i
{‖x − mi‖} (1)

Next, the prototype vectors are updated. The BMU and its

topological neighbors are moved closer to the input vector.

The update rule for the prototype vector of unit i is:

mi(t + 1) = mi(t) + α(t)hbi(t)[x − mi(t)], (2)

where t denotes time, α(t) is learning rate and hbi(t) is a

neighborhood kernel centered on the BMU. The learning rate

α(t) and neighborhood radius of hbi(t) decrease monotoni-

cally with time.

The hierarchical SOM (HSOM) can be defined as a two-

stage SOM whose operating principle is:

1. For each input vector x, the best matching unit is chosen

from the first layer map, and its index b is input into the

second layer;

2. The best matching unit for input b is chosen from the

second layer map, and its index is the output of the net-

work.

The advantage of using the HSOM is that each high dimen-

sional data vector is mapped to a low-dimensional discrete

value so that comparing the values implicitly contains com-

parison of the original distances.

2.3. Region Merging

The output of the HSOM is, more often than not, an over-

segmented image. The colors obtained at the end of HSOM

testing stage can be perceived as labels assigned by the clas-

sification scheme. Conceptually, the clusters represent neu-

ron states. Hence, such neurons can be merged to arrive at a

perceptually consistent segmentation. This is achieved by a

homogeneity-based region-merging algorithm similar to [8].

While [8] works with real color values in the image, we are

looking to merge similar neurons based on the color charac-

teristics learned by the network.

The RGB color space was used for feature extraction

as relationships between the various components due to its

nonlinear nature are utilized in the classification process.

However, this very characteristic can prove detrimental when

used in a distance-based algorithm. Perceptually linear color

spaces - where a change in color value is nearly equal in

magnitude to a change in visual importance as perceived by

humans - are desirable for such computation. Hence, the

color characteristics of the neurons are transformed into the

CIE (L∗a∗b∗) color space for region merging. The texture

components are excluded from due to the lack of a similar

perceptually linear space.

Since we are looking for four classes, merging is carried

out until we have four clusters left. The segmented image

thus generated is seen to have more homogeneity within the

regions and more disparity between them. Finally, the seg-

mented image is recolored for ease of visualization using the

following mapping: nuclei (blue), stroma (red), epithelial tis-

sue (pink), and glands (white).

3. RESULTS

Prostate cancer TMAs were obtained from Cytomyx and Im-

genex containing a total of 109 tissue elements consisting

of both human prostate cancer and normal controls. H&E

stained slides of size 1024*768 were acquired using a 10X

objective with a white light microscope (Leica) stored as 24
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bit RGB files for image processing. The tissue microarray

elements were digitized and processed to segment the differ-

ent tissue compartments. A normal prostate tissue image at

10X shows glands with an epithelial layer and nuclei arranged

along the boundary and stroma in the interior.

Here we present qualitative comparisons of the results of

the HSOM to the clustering method using EM Gaussian clus-

tering initialized with a K-means [9] algorithm.

To initialize the K-means clusters, regions of interest were

manually selected in the gland lumen, epithelial tissue, stroma

and nuclei, and the average intensity in each RGB channel

was measured. An iterative K-means procedure was used for

each image in the series to find accurate cluster centers after

initialization with the measured average intensity. The EM

Gaussian algorithm [10] is a maximum likelihood algorithm

where the clusters are fit to a mixture of Gaussians wherein

the most likely tissue is used to segment the image. Using

the initialization from the K-means, a further improvement is

estimating the mean μm and covariance Σm to fit a mixed

Gaussian distribution to the sampled pixels. The covariances

are then used to estimate the likelihood of each tissue.

The HSOM results (shown in the right column of Fig-

ure 2) demonstrate that the nuclei and gland segmentation are

similar to the EM Gaussian method. However, the distribu-

tion is different for the epithelial and stroma tissues, which

are spectrally the most similar classes. The HSOM algorithm

is better able to separate these two tissues through the use of

texture features in addition to spectral features.

The EM Gaussian method (results shown in the middle

column of Figure 2) tends to produce fragmented segments

as variation about individual cluster centers is not adequately

modeled during training. The HSOM classification has more

discrimination. The neuron-merging stage ensures increased

homogeneity within individual segments and also provides

better discrimination between different segments. This obser-

vation also emphasizes the advantage derived by using pixels

from the available image for training, as opposed to an exten-

sive set of training images. This is a significant advantage as

it is difficult to compose a training set which captures all the

variations occurring in clinical data.

4. CONCLUSIONS AND FUTURE WORK

We have presented a method using HSOMs for segmenting

H&E prostate TMAs into tissue compartments. The pro-

posed two-stage HSOM approach combines the advantages

of unsupervised learning and labeling of the clustered out-

puts. The HSOM detects dominant color and texture features

in the given tissue, which are subsequently used to segment

the tissue by pixel classification. We compared the results of

the HSOM to those obtained using an EM Gaussian mixture

model. The use of texture in the HSOM improves the ability

of the algorithm to discriminate among the four classes in the

tissue, especially between the epithelial and stroma tissues.

Future work includes extracting discriminate features

from the segmentations that can be correlated with the Glea-

son and tumor staging scores [11]. This will enable automatic

staging of tissue images, which can then be used for train-

ing new pathologists and can serve as a second reader in the

analysis of such images.
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(a) Cytomyx Normal Tissue (b) EM Segmentation of Normal Tissue (c) HSOM Segmentation of Normal

Tissue

(d) Cytomyx Stage I Tissue (e) EM Segmentation of Stage I Tissue (f) HSOM Segmentation of Stage I Tis-

sue

(g) Imgenex Normal Tissue (h) EM Segmentation of Normal Tissue (i) HSOM Segmentation of Normal

Tissue

(j) Imgenex Stage III Tissue (k) EM Segmentation of Stage III Tis-

sue

(l) HSOM Segmentation of Stage III

Tissue

Fig. 2. Comparison of segmentation results on Cytomyx and Imgenex datasets. The images in the left column are the original

images, in the middle column are the EM segmentations, and on the right are the HSOM segmentations. The first and third

rows give examples of normal tissues, and the second and fourth rows give examples of various tumor stages. Because of the

use of texture, the HSOM method is better able to separate the spectrally similar stroma and epithelial tissues.
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